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Binary fluids under steady shear in three dimensions
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We simulate by the lattice Boltzmann method the steady shearing of a binary fluid mixture with full
hydrodynamics in three dimensions. Contrary to some theoretical scenarios, a dynamical steady state is at-
tained with finite correlation lengths in all three spatial directions. Using large simulations, we obtain at
moderately high Reynolds numbers apparent scaling exponents comparable to those found by us previously in
two dimensions (2D). However, in 3D there may be a crossover to different behavior at low Reynolds number:
accessing this regime requires even larger computational resources than used here.
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Systems that are not in thermal equilibrium play a central
role in modern statistical physics [1]. They include two im-
portant classes: those evolving toward Boltzmann equilib-
rium (e.g., by phase separation following a temperature
quench), and those maintained in nonequilibrium by continu-
ous driving (such as a shear flow). Of fundamental interest,
and surprising physical subtlety, are systems combining both
features—such as a binary fluid undergoing phase separation
in the presence of shear. Here a central issue [2,3] is whether
coarsening continues indefinitely, as it does without shear, or
whether a nonequilibrium steady state (NESS) is reached, in
which the characteristic length scales L, . of the fluid do-
main structure attain finite y-dependent values at late times.
(We define the mean velocity as u,=yy, so that x,y, and z are
velocity, velocity gradient, and vorticity directions respec-
tively; vy is the shear rate.)

Our recent simulations, building on earlier work of others
[4,5], have shown that in two dimensions (2D), a NESS is
indeed achieved [6]. In 3D, the situation is more subtle. Fou-
rier components of the composition field whose wave vectors
lie along the vorticity direction experience no direct effect of
the mean advective velocity [2,7]. Therefore it might be pos-
sible for coarsening to proceed indefinitely by pumping
through tubes of fluid oriented along z [3]. Another crucial
difference is that in a 2D fluid bicontinuity is possible only
by fine tuning to a percolation threshold at 50:50 composi-
tion (assuming fluids of equal viscosity), so that the generic
situation is one of droplets. (Indeed, for topological reasons,
droplets are implicated even at threshold [4].) In contrast, in
3D, both fluids remain continuously connected across the
sample throughout a broad composition window either side
of 50:50.

In 3D experiments, saturating length scales are reportedly
reached after a period of anisotropic domain growth [2,8].
However, the extreme elongation of domains along the flow
direction means that, even in experiments, finite-size effects
could play a role in such saturation [9]. Theories in which
the velocity does not fluctuate, but does advect the diffusive
fluctuations of the concentration field, predict instead
indefinite coarsening, with length scales L,, scaling as
v-independent powers of the time ¢ since quench, and (typi-
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cally) L,~ yL, [9]. As emphasized in [6], in real fluids,
however, the velocity fluctuates nonlinearly in response to
the advected concentration field, and hydrodynamic scaling
arguments, balancing interfacial and either viscous or inertial
effects, predict saturation instead e.g., L/Lo~ (yT,)"
or L/Ly~(yTy)™? [3,10,11]. Here, Ly=v*/(po) and T,
=1v3/(po?), with p the density, v=17/p kinematic viscosity,
and o the interfacial tension, are the characteristic length and
time at which inertial effects start to influence coarsening
[12]. Given these uncertainties as to the fate of sheared bi-
nary fluids in 3D, computer simulations of such systems,
with full hydrodynamic velocity fluctuations, are of great
interest.

Such simulations also offer demanding challenges to the
state of the art in computational physics. The 2D lattice
Boltzmann (LB) results of [6] were obtained from 16 pro-
duction runs involving lattices ranging from 512X 256 to
2048 X 1024 (all systems having aspect ratio 2:1). Many pre-
production runs were required to steer simulation parameters
so as to avoid finite-size effects and other artifacts. This ef-
fort was rewarded, however: the unique parametric flexibility
of the LB method allowed us to probe over six decades of
reduced shear rate 7T, [6]. Below, we extend that work to
three dimensions with nine production runs on 512 X256
X256 lattices, and three larger runs of 1024 X512 X512
(i.e., all with aspect ratio 2:1:1). Even given the excellent
parallel scaling of the LB simulation on multiprocessor ma-
chines, each one of these 12 data sets required more compu-
tational resource than the entirety of Ref. [6]. The production
runs reported here were performed using 1024 processors of
the IBM Blue Gene/L machine at the University of Edin-
burgh.

Although our simulations are not the first to address
sheared binary fluids in 3D (see, e.g., [3,13]), earlier studies
have offered only inconclusive evidence of NESS formation
in systems free of finite-size effects. Such effects can cause
fully lamellar or hexagonal cylindrical domains, which wrap
the periodic boundary conditions with simple topologies that
prevent further hydrodynamic coarsening [3,14]; but this
“trivial” route to a NESS relies directly on the periodic
boundary conditions and is thus not available in the bulk-
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FIG. 1. (Color online) Snapshots of the interface position at
v1,=22.47 (top) and 47.45 (bottom) with parameter set RO19
(Table I). These are representative of the observed NESS. The mean
flow is rightward along the upper face of the simulation box and
leftward at the lower face; the line of sight lies close to the vorticity
(neutral) direction z. Light (yellow) and dark (blue) isosurfaces are
constructed at ¢p=+0.2 to create a dividing surface color coded by
the adjacent fluids (both shown transparent).

system limit. Below we present evidence of NESS formation
in systems retaining the complex topology expected in bulk
samples, where a steady-state dynamical balance can arise
between the coarsening of bicontinuous domains under the
action of interfacial tension, and their stretching by the flow
(Fig. 1).

The required parameter steering would not have proven
possible without having the 2D runs to initially guide our
selection—a methodology that can succeed only if the phys-
ics in 2D and 3D is not radically different. Below we find
that to be true for the upper few decades of the range of
(¥T,)~" addressed in [6]; within this range, evidence is given
below for saturation of correlation lengths with finite values
in all three directions. We then combine data sets using a
quantitative scaling methodology developed for the un-
sheared problem in [12] and for shear in [6]; this allows
scaling exponents to be estimated using combined multi-
decade fits. Caution is required here due to residual finite-
size effects; these are unavoidable, particularly at high shear
rates where we find the NESS hardest to achieve numeri-
cally. Note that high shear rates correspond to /low Reynolds
numbers Re 2L§7/V (due to the decrease of domain size
with increasing shear rate); these results could therefore sig-
nify new physics at low Re [3]. However, much larger sys-
tem sizes might be needed to gain full access to this regime.

The governing equations for our binary fluid system are
the Cahn-Hilliard equation for the composition ¢, and the
incompressible Navier-Stokes equation for the velocity u, in
an isothermal fluid of unit density p:

(r?,ua+u,gVﬁua)+Vap—szua—d)Vap,:O, (1)
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at¢+ Va(d)ua_MVa/*L) =0. (2)

Here, p is pressure (related in LB simulations to density
fluctuations, which are small [12]), v is the kinematic viscos-
ity, M is the (¢-independent) mobility, and w=Bgp(¢H*—1)
—kV?¢ is the chemical potential. B and « are positive con-
stants; the interfacial tension is o=(8xB/9)"? and the inter-
facial width is &=(2«/B)"? [12].

We solve these equations with a LB algorithm similar to
that reported in [12,15]. To achieve the necessary shear rates,
the domain is decomposed blockwise using multiple Lees-
Edwards sliding periodic boundary conditions [6,16], chosen
so that [ OA-“V},uxdy:ij/. Although we neglect thermal fluc-
tuations in our fluid, as appropriate for dynamics near a zero-
temperature fixed point [17], a fluctuating local velocity field
still arises via nonlinear interaction between the order param-
eter field and flow field. To help control errors, we adhered as
far as possible to previously used parameter values and pro-
tocols [6,12]. However, the sheared 3D case showed signifi-
cant stability problems compared with either the 3D un-
sheared case or the 2D sheared case. To alleviate these, we
replaced the 15-velocity LB model of [12] with a 19—
velocity model; this removes a “computational mode” re-
sponsible for some of the instabilities of the former [18]. We
also use a multiple relaxation time approach [19] in place of
a single relaxation time [6,12], further improving stability.

Most of our 3D production runs were made using system
size 512X 256 X 256, run for =4 X 10’ time steps. Holding
other parameters fixed, one finds that, if ¥ is too small, the
domain size is large and finite-size effects dominate, whereas
if  is too large then the domains become small on the lattice
scale and tend to form a partially (or even fully) remixed
state with strongly blurred interfaces. Such remixing could
be a real physical effect at shear rates so high that the local
interfacial structure departs strongly from equilibrium, but
this happens at much lower shear rates in a LB fluid than in
a real one (where &, is much smaller). We therefore reject as
artifacts all such partially remixed states, as identified by a
significant reduction in order parameter variance (¢”). Worst
affected were the runs at higher Reynolds number (low vis-
cosity) where an adjustment of the interfacial width from
&=1.13 to 1.35 helped to maintain acceptable behavior. All
simulations reported here were done for fully symmetric
quenches with parameters summarized in Table I. As in the
unsheared case [12], judicious combinations of &, o, M, and
v allow systems spanning several decades in L/L and T, to
be accurately studied by varying L, and T}, alongside y.

Figure 1 shows snapshots of the interfacial structure based
on the order parameter field for R0O19 with y=5X 10~ after
a steady state had been reached [20]. Figure 2 shows time
series for L, . from runs RO30 and R0O19 as measured by a
standard order parameter gradient statistic [4] that effectively
measures the mean distance between interfaces crossing the
chosen direction.

In [12], finite-size effects (in the absence of shear) were
considered quantitatively under control when the correlation
length L was less than 1/4 of the system size A. In [6] this
criterion was applied to time-averaged correlation lengths
L,, in the 2D sheared system. However, the actual system
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TABLE 1. Parameter sets used in 3D simulations and observed NESS length scales. Where a trivial NESS could be identified by
inspection, no length is recorded. The results of R020 were ambiguous: periods of apparent NESS were contaminated by intervals of partial

remixing (low {$?)).

Name v M Tiheory T eas Ly T, & b% A, L, Ly L,

R028 1.41 0.05 0.063 0.055 36.1 927 1.13 5.0x 107 1024

R029 0.2 0.15 0.047 0.042 0.952 4.54 1.13 5.0x 107 1024

R020 0.025 2 0.0047 0.0042 0.149 0.886 1.13 5.0x107* 1024

R003 0.015 2.0 0.0047 0.0042 0.054 0.19 1.13 7.5X 107 512 511 72.2 172
5.0x107* 512 828 116 352

R004 0.01 2.0 0.0047 0.0042 0.024 0.0567 1.13 7.5x1074 512 356 68.1 131
5.0%x107* 512 491 106 192

R030 0.00625 1.25 0.0047 0.0042 0.00930 0.0138 1.13 5.0%x107* 512 375 91.6 160

R007 0.005 2.0 0.0047 0.0042 0.0059 0.00709 1.13 5.0%x107* 512 382 974 174

R008 0.0035 2.0 0.0047 0.0042 0.0029 0.00243 1.35 5.0x107* 512 370 101 177

RO19 0.0014 0.0024 0.0021 0.000933 0.000622 1.35 5.0%x107* 512 234 713 118

RO32 0.0005 5 0.00094  0.00083 0.000301 0.000181 1.35 5.0%x 1074 512 135 48.0 712

size dependence of L, in both 2D [6] and 3D (this work)
suggests that under shear this criterion is unnecessarily strict,
at least if the purpose is to eliminate the gualitatively artifac-
tual states that arise directly from finite-size effects. As men-
tioned previously, these “trivial” NESS’s form obvious lami-
nar stripes extending the full size of the simulation box in
both x and z directions. For such states, L, . values that are
formally much larger than the simulation dimensions A, , are
rapidly established. (L,>> A, means that, for most coordi-
nates y,z, one can cycle round the periodic boundary condi-
tions in x without encountering a single domain wall.) To
formally eliminate these, a criterion L, <A, , . is applied,
which also excludes one apparently nontrivial NESS run
(Table I) from the scaling analysis made below. At the lowest
Reynolds numbers investigated, only a trivial NESS was
found on a 512X 256X256 lattice; larger systems, 1024
X512 X512, were then simulated for these parameters but
gave the same structure. This difficulty in achieving a bulk
NESS at low Re perhaps suggests onset of a new regime; we
return to this below.
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FIG. 2. (Color online) Two examples of L, , . in lattice units as
a function of time in strain units y for RO30 parameters (upper
panel) and R0O19 parameters (lower panel). For all parameters where
a steady state is observed, the length scale as measured by the
gradient statistic of [4] is largest in the velocity direction, L,, fol-
lowed by the vorticity direction, L, with that in the velocity gradi-
ent direction, L,, the smallest.

Only at the largest (77)"! values investigated was the
strict finite-size criterion of [12], L,<A,/4, approached.
(Note, however, that earlier studies accepted L<<A/2 as suf-
ficient, e.g., [21].) Accordingly we expect that the quantita-
tive scaling of all our correlation length data with shear rate
may still be affected by finite-size corrections. With this ca-
veat, we proceed to perform a scaling analysis based on the
protocol of [6]. To construct our scaling plot, mean values of
L., . were obtained via a bootstrap procedure [6] performed
on each times series, discarding data for which < 10° (to
eliminate transients). The results for L., /L, are plotted
against ($T,)~" in Fig. 3. Linear least-squares fits to these
data suggest scaling exponents for L., . of, respectively,
-0.54+0.03, -0.65+0.03, and —0.60+0.04 at the 95% con-
fidence level. An alternative scaling, using the principal axes
of the gradient statistic [4,6], gives exponents for Ls,L,, and
L, of —0.53+£0.04, —-0.67+0.03, and —0.64+0.06 (data not
shown). These results appear to rule out L,~ y**, which
was found in 2D [6]. However, the range of Re accessible is
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FIG. 3. (Color online) Reduced length scales L,, /L, (black
squares, red triangles, and blue circles, respectively) as a function
of inverse reduced shear rate for the eight runs in which a nontrivial
NESS was observed. The standard errors in the individual points are
no larger than the symbols; the dashed lines give the 95% confi-
dence limits of the fitted regression.
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restricted to about 1 decade (260 =Re=2300); as in 2D, one
cannot rule out that these are effective exponents describing
the crossover region. These Re values are also high enough
that a multiple length scaling might be needed [22].

The quoted error margins do not, of course, allow for
systematic error of which there are several sources (even
discounting finite-size effects), each at the likely level of
several percent [6,12]. Accordingly, these results do not rule
out a common scaling of all three correlation lengths with a
single exponent, L, /Ly~ (¥T,)™*", at least in the inertial
limit of very large (¥7,)~! where the data hint that the three
curves may saturate to fixed ratios. Conversely, the ever-
increasing difficulty of achieving a NESS at small (7,)"!
may point to a quite different behavior at low Reynolds num-
bers. Suggestively, Fielding [23] has recently performed 2D
binary Stokes flow simulations, finding no evidence of a bulk
NESS at Re=0; this could mean that inertia plays the role of
a singular perturbation in this problem. Moreover, for a range
of ¥T, around 1073, the NESS is easily achieved in 2D but
not 3D: the ability to form connections in the vorticity direc-
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tion might, at moderate and low Re, require formation of
domains of extremely high aspect ratio before a NESS can
be reached.

In conclusion, while open issues remain concerning the
details of scaling and finite-size behavior, our simulations
present clear evidence for nonequilibrium steady states in 3D
sheared binary fluids. The qualitative character of the NESS
achieved in these simulations at high Re (low shear rate),
which entails a balance between domain stretching under
flow and coarsening driven by interfacial tension, strongly
suggests that these results represent true bulk behavior. Since
the effect of coarsening at fixed  is to increase Re, indefinite
coarsening [9] can seemingly be ruled out even at higher
shear rates, although a different mechanism for achieving a
NESS may operate there.
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